Stochastic diffusion processes on Cartesian meshes

نویسندگان

  • Lina Meinecke
  • Per Lötstedt
چکیده

Diffusion of molecules is simulated stochastically by letting them jump between voxels in a Cartesian mesh. The jump coefficients are first derived using finite difference, finite element, and finite volume approximations of the Laplacian on the mesh. An alternative is to let the first exit time for a molecule in random walk in a voxel define the jump coefficient. Such coefficients have the advantage of always being non-negative. These four different ways of obtaining the diffusion propensities are compared theoretically and in numerical experiments. A finite difference and a finite volume approximation generate the most accurate coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Study of two Diffusion Processes on Torus and Their Applications

Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...

متن کامل

Optimal Error Estimates of the Local Discontinuous Galerkin Method for Surface Diffusion of Graphs on Cartesian Meshes

In (Xu and Shu in J. Sci. Comput. 40:375–390, 2009), a local discontinuous Galerkin (LDG) method for the surface diffusion of graphs was developed and a rigorous proof for its energy stability was given. Numerical simulation results showed the optimal order of accuracy. In this subsequent paper, we concentrate on analyzing a priori error estimates of the LDG method for the surface diffusion of ...

متن کامل

Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion équation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H finite volume space. We actually prove...

متن کامل

A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes

We present a second order, finite volume scheme for the constant-coefficient diffusion equation on curved, parametric surfaces. While our scheme is applicable to general quadrilateral surface meshes based on smooth or piecewise smooth coordinate transformations, our primary motivation for developing the present scheme is to solve diffusion problems on a particular set of circular and spherical ...

متن کامل

URDME v. 1.2: User's manual

Stochastic simulation methods are frequently used to study the behavior of cellular control systems modeled as continuous-time discrete-space Markov processes (CTMC). Compared to the most frequently used deterministic model, the reaction rate equations, the mesoscopic stochastic description can capture effects from intrinsic noise on the behavior of the networks [1, 9, 27, 28, 31]. In the discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational and applied mathematics

دوره 294  شماره 

صفحات  -

تاریخ انتشار 2016